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Collective flux creep: Beyond the logarithmic solution
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Numerical studies of the flux creep in superconductors show that the distribution of the magnetic field at any
stage of the creep process can be well described by the condition of spatial constancy of the activation energy
U independently on the particular dependence ofU on the fieldB and currentj. This results from a self-
organization of the creep process in the undercritical statej , j c related to a strong nonlinearity of the flux
motion. Using the spatial constancy ofU, one can find the field profilesB(x), formulate a semianalytical
approach to the creep problem and generalize the logarithmic solution for flux creep, obtained forU5U( j ), to
the case of essential dependence ofU on B. This approach is useful for the analysis of dynamic formation of
an anomalous magnetization curve~‘‘fishtail’’ !. We analyze the quality of the logarithmic and generalized
logarithmic approximations and show that the latter predicts a maximum in the creep rate at short times, which
has been observed experimentally. The vortex annihilation lines~or the sample edge for the case of remanent
state relaxation!, where B50, cause instabilities~flux-flow regions! and modify or even destroy the self-
organization of flux creep in the whole sample.@S0163-1829~98!02842-2#
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I. INTRODUCTION

Since the discovery of the giant vortex creep1 in high-
temperature superconductors~HTSC!, it has become clea
that the relaxation processes in these compounds ma
very rapid compared to usual low-temperature supercond
ors. The magnetization currentj and, in turn, the magnetic
momentM, which is approximately proportional toj in most
cases, drop considerably during the usual experimental
windows of a few hours~or even less! down to small values
j ! j c , in particular, at elevated temperatures. Herej c is the
critical current, which divides the regimes offlux creep( j
, j c) characterized by the Boltzmann factor exp(2U/kT),
whereU(B, j ,T) is the activation energy for flux creep, an
the nonactivationalflux flow( j . j c) with U50. Due to such
a pronounced relaxation, bothj and M are determined in
HTSC mostly by the flux dynamics in contrast to conve
tional superconductors where relaxation is usually very sl
so j > j c for any accessible time windows. This has given r
to an extensive study, both theoretical and experimenta
magnetic relaxation and vortex dynamics in HTSC~see Refs.
2–4 as reviews!. Most of them are based on the logarithm
solution:5

U.kT lnS 11
t

t0
D , ~1!

wheret0 is the logarithmic time scale for flux creep. We w
discuss Eq.~1! in detail in Sec. III.

A closely related problem is the so-called ‘‘fishtail’’ e
fect, i.e., the anomalous increase ofM as a function ofH,6 or
the increase of locally measuredj as a function ofB.7,8 This
effect serves as a test for different models of flux pinning a
creep. The crucial question is whether the nonmonoton
behavior of j results from the same feature inj c ~‘‘static
fishtail’’ !, or arises from a faster relaxation ofj at smallB,
whereasj c is a monotonously decreasing function ofB and
itself shows no anomaly~‘‘dynamic fishtail’’!. The latter
PRB 580163-1829/98/58~22!/15067~11!/$15.00
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possibility implies that the fishtail effect should disappear
shorter time windows or lower temperatures where the ef
of relaxation is negligible andj > j c .9

After the instantaneous switching on of the external fie
H, the flux-flow process develops towards establishing
nearly critical profilej > j c(B), where the Lorentz force (j c

3f0)/c is compensated by the pinning force (f0 is the flux
quantum andc is the velocity of light! all over the sample.
Usually the durationtflow of flux flow does not exceed a few
milliseconds~see Ref. 10 and references therein!. As j drops
below j c , the slow process of flux creep starts. The cre
rate is mostly determined by the Boltzmann fact
exp(2U/kT), whereU5U(B, j ). Of course,U depends also
on temperature, but the creep experiments are usually
ducted at constant temperature. In many cases the de
dence ofU on B can be neglected, which implies a cruci
simplification for the theoretical description of flux cree
For instance, in an infinite slab of width 2d (2d,x,d) in
the parallel external fieldH, the variation of the magnetic
induction dB5B(d)2B(0) does not exceedH* , where
H* 5(4p/c) j cd is the full penetration field11 ( j c is consid-
ered to be field-independent!. For H@H* one can neglect
dB&H* . If both j c and d are sufficiently small, say,j c
.104 A/cm2 andd.0.1 mm, thenH* is of order hundreds
of G. In this case the above condition is easily fulfilled f
most H, and the activation energy appears to be fie
independent:U( j ,B)>U( j ,H). Then the field profilesB(x)
are almost straight,10,12 i.e., j >const throughout the sampl
at all creep stages.

However, in larger samples (d*1 mm! with strong pin-
ning (j c.105 A/cm2), one getsdB.H* .1 T, which im-
plies that the spatial variation ofB may not be small com-
pared toH. Of course this estimation may not be valid
high temperatures wherej c drops. But for large and not too
clean samples well belowTc the dependence ofU on B is
essential, and the field profiles are not straight. On the o
hand, due to very fast relaxationB can vary by orders of
15 067 ©1998 The American Physical Society
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magnitude during experimental time windows of order
hours~see, for instance, Ref. 7!, which also requires taking
the U(B)-dependence into account for the consistent
scription of the relaxation process, especially in the dyna
models of the fishtail formation.

The goal of this paper is to study the relaxation proc
for various dependencies ofU on j andB. In Sec. II we show
that the field profile at any stage of the relaxation process
be described by the condition of spatial constancy of
activation energy:

U~x!>const ~2!

throughout the whole sample, where const depends on
only. SinceU5U(B, j ), Eq. ~2! provides an implicit rela-
tionship betweenB and j, manifesting a condition ofself-
organization of flux motion in the undercritical regimej
, j c . In other words, according to Eq.~2! the field profiles
form a one-parameter familyBU(x). The problem to be
solved in order to describe the flux creep is to find the
profiles together with the dependence ofU on time. Note that
this case differs from the self-organized criticality~see the
pioneering work13 and further applications to the superco
ductors in a critical state14!, where the peculiarities of the
flux motion ~avalanches, critical exponents, etc.! are consid-
ered in the vicinity of the critical statej > j c ~i.e., at U
>0). The conditionj >const found in previous studies10,12is
obviously just a particular case of Eq.~2! provided U is
independent ofB. In Sec. III we analyze numerically and
using Eq. ~2!, semianalytically the flux creep for variou
U(B, j )-dependencies, particularly for the most general c
lective creep behaviorU}Ba j 2m. We show that at short, bu
experimentally available time scales the creep process di
significantly from the logarithmic solution@see Eq.~1!# and
shows a maximum in the relaxation rate,dU/d ln t, in accor-
dance with the experimental data. The semianalytical s
tion provides a good approximation to the exact~numerical!
one at all time scales. In Sec. IV we apply these ideas to
problem of the anomalous magnetization curve~fishtail! and
show how the dynamic development of the anomaly inj ~or
the same, inM} j ) can be described semianalytically. In Se
V we study the effect of so-called ‘‘annihilation lines’’ in
infinitely long samples, whereB changes sign and vortice
with opposite directions annihilate each other, on the s
organization of the flux motion. A particular case of such
line is the edge of the infinitely long sample in the reman
state. The vortex velocityv shows a peculiarity~divergence!
at such a line, resulting in the appearance of flux-flow
gions in the vicinity of the annihilation lines. We show th
these peculiarities affect deeply the self-organization
creep and the condition of spatial constancy forU @see Eq.
~2!# is modified or even destroyed in the whole sample~and
not only in the vicinity of the annihilation lines!.

II. SPATIAL CONSTANCY OF U

Consider an infinite slab of thickness 2d (2d,x,d)
with the magnetic fieldB(x) parallel toz-direction and the
currentj flowing alongy . The external fieldH is switched on
instantaneously when no vortices are present in the sam
which corresponds to zero-field-cooled experiments.
considerH@Hc1 , whereHc1 is the lower critical field, and
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disregard the effects related to the latter.
The flux creep is described by the diffusion equation:15

]B

]t
52

]D

]x
, ~3!

where

D5Bv5A
f0

ch
B j exp~2U/kT! ~4!

is the magnetic flux current,v is the vortex velocity,h is the
Bardeen-Stephen drag~friction! coefficient16 for flux flow
andA is a numerical factor. Note thatD is proportional to
the electric fieldE5(B3v)/c in the sample. The form of the
magnetic flux currentD is chosen such17 that atU50 and
A51 the flux velocityv corresponds to the Bardeen-Steph
expression16 for the flux flow: v5vflow5f0 j /ch.

It has been already discussed2 that the strongly nonlinea
Eq. ~3! should obey a self-organized behavior. This mea
that if a fluctuationdU appears in the sample, it results in
significant ~exponential! local change of the flux currentD
}exp(2dU/kT) which, in turn, leads to fast smearing out
the fluctuation. In other words,udUu.kT is the scale of
‘‘permitted’’ variations of U. This has been proved exper
mentally by direct measurements ofU using the Hall probe
technique18 and shown theoretically for the linea
~Anderson-Kim! dependenceU( j )} j c2 j , where an exact
parabolic solution for the electric fieldE(x,t)}D(x,t) was
found.19 It is worth mentioning that our model differs from
that used in Ref. 19, whereD5D0exp(2U(j)/kT), by the
factor j in the preexponential term of Eq.~ 4! and, of course,
by the dependence ofU on B.

We are interested in a general case of arbitrary dep
dence ofU on B and j. Thus we suggest a more gener
criterion of self-organization as follows. Resulting from E
~3!, the local relaxation rate]B/]t is proportional to the
spatial variation of the flux current densityD. The latter can
be written as

dD5
]D

]B
dB1

]D

] j
d j 1

]D

]U
dU, ~5!

whereB, j, andU are formally considered as three relaxin
parameters, though being mutually dependent, sinceU
5U(B, j ) andB is related toj by Maxwell equations. If one
of the three terms in the right-hand side of Eq.~5! appears to
be considerably greater by absolute value than the other
terms, the corresponding parameter governs the relaxa
rate]B/]t, and, in turn, relaxes itself towards its equilibriu
value @i.e., B→H, j→0, andU(B, j )→U(H,0)] irrespec-
tive of what happens with the other two. Generally@except
maybe very specific types of dependenceU(B, j )] this
should lead to a self-organization of the flux diffusion pr
cess which implies that the three terms in the right-hand s
of Eq. ~5! tend to keep the same order:

]D

]B
dB>

]D

] j
d j >

]D

]U
dU. ~6!
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The above condition can be considered as a mutual con
ment for variations ofB, j, andU. Taking the expression fo
D from Eq. ~4!, we get a limitation fordU:

dU

kT
&maxH dB

B
,
d j

j J . ~7!

Note that the above estimation does not require the cond
U@kT, i.e., it should hold starting from the very early stag
of flux creep.

If one of the three terms in Eq.~6! is very small ~or
absent! for any ‘‘external’’ reason, then the self-organizatio
applies to the two other ones. For instance, ifB is much
greater thanH* and thusdB/B!1, we get

dU

kT
.

]U

] j

d j

kT
.

Uc

kT

d j

j c
,1, ~8!

where Uc is the characteristic activation energy forj→0.
Since in generalUc@kT, we getd j ,(kT/Uc) j c! j c , as has
already been discussed in Ref. 10.

It is worth mentioning, however, that at the locatio
where j 50 or B50 the variations ofU may exceedkT
significantly, as follows from Eq.~ 7!. The first of these two
conditions (j 50) regularly holds at the center of the samp
(x50). For instance, the parabolic solution forD(x) ~Ref.
19! shows the logarithmic divergency ofU at x50. We will
comment on this point in the following Sec. III. The seco
condition (B50) holds at the lines where vortices of diffe
ent sign annihilate each other, or just at the edge of
sample in the remanent state. We will devote special Se
for the latter case.

Equations~7! and ~8! prove the spatial constancy ofU
throughout the sample with akT precision@see Eq.~2!#. The
analytical results based on Eq.~2! we will refer below as
‘‘semianalytical’’ ones.

III. ONE-DIMENSIONAL CREEP EQUATION

In an infinite slab the currentj is related toB by the
Maxwell law:

j 52
c

4p

]B

]x
, ~9!

if one uses a reference systemxyzwhereBiz and j iy. For a
platelet sample in a perpendicular external field, where
in-plane field componentBx appears, the relation betweenj
andB becomes more complicated.4,20 Here we focus on the
one-dimensional creep problem whereBx50, soBz5B.

After substituting Eq.~9! into Eq. ~3! one gets the basic
one-dimensional equation for flux motion:

]B

]t
5

]

]xSA f0

4ph
B

]B

]x
exp~2U/kT! D . ~10!

The numerical coefficientA depends on the creep mech
nism and should not necessarily be of order of unity21 ~see
also discussion in Ref. 10!. However, the low field measure
ments ~i.e., in the single vortex pinning regime! in
YBa2Cu3O72x crystals,18 where Eq.~10! was experimentally
studied by direct local measurements ofB, ]B/]x, and
e-

n

e
V

e

]B/]t, revealed thatA.1. Thus, at least in the case o
single vortex pinning, Eq.~10! is consistent with the equa
tion for flux flow:

]B

]t
5

]

]xS f0

4ph
B

]B

]x D , ~11!

since the latter can be obtained from Eq.~10! at U50 and
A51.

The features of self-organized criticality in the solution
Eq. ~10! have been analyzed17 for the case of switching on o
a small additional fielddB on the background ofB@dB
already present in the sample, and for a specific~logarithmic!
dependence of the activation energy on the current:U
5U0ln(j0 /j). In terms of the energy distributionU(x) across
the sample the case considered in Ref. 17 implies that in
beginning the energy was very large~or infinite! in the whole
sample, sincej 50, then an area of smallU appeared at the
edge~after switching ondB), and the propagation of this
‘‘fluctuation’’ of the U(x) profile was studied.

In contrast to Ref. 17 we consider below the instantane
switching on or removal of the whole external fieldH. A sort
of self-organization, i.e., establishing of a ‘‘partial critic
state’’22 with j (B)} j c(B) has already been reported for th
case. We show below that this result follows from our mo
general approach based on Eq.~2! if U5U@ j / j c(B)#, but for
an arbitraryU(B, j )-dependence the partial critical state m
not be established. Our general results on self-organiza
of the flux creep do not depend on the specificU(B, j )-
dependence, but focus on the collective creep beha
U(B, j )}Ba j 2m. We will not consider the time-dependen
boundary conditionsH5H(t). Some results for the latte
case can be found in Refs. 23 and 24.

The integration of Eq.~10! can be performed as follows
Defining the magnetization as

m5
1

2dE2d

d

~B2H !dx ~12!

and integrating Eq.~10! over x, we get

]m

]t
5A

f0

4phd
HU]B

]xU
x56d

exp~2Uedge/kT!, ~13!

where Uedge5U(x56d) is the activation energy at th
edges of the slab. The constancy of the activation energy@see
Eq. ~8!# means thatU(x)>Uedge[U over the most part of
sample except the very central regionuxu!d, which contri-
bution to m is negligible. Note that we do not perform an
averaging ofU(x) but just exclude the central region from
consideration. For the case of straight field profile
u]B/]xu>const one can rewrite Eq.~13! in a very simple
form:

]m

]t
>A

m

t
exp~2U/kT!, ~14!

wheret52phd2/f0H.
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A. Flux flow „ j> j c…

After switching on the external fieldH, the flux flow starts
and lasts until the vortices fill the sample up to the critic
profile j c . Its durationtflow can be easily estimated if on
notices that already during the flow regime theB(x)-profiles
are almost straight, i.e.,u j u5(c/4p)u]B/]xu.const @see
dashed lines in Fig. 1~a!#. Using the straightness of the fiel
profiles, one can estimate the magnetizationm as

m~ j !>H2
cH2

8p jd
for j . j * , ~15!

m~ j !>
2p jd

c
for j , j * , ~16!

where the currentj * 5cH/4pd shown as a gray solid line in
Fig. 1~a! discriminates between the incomplete and comp
penetration of flux into the sample. Note that we have cho
H.H* , whereH* 54p j cd/c is the field of full penetration.
This means thatj c, j * , i.e., by the completion of the flux
flow stage, flux penetrates the whole sample@see Fig. 1~a!#.
Then, substituting these values into Eq.~13! and solving it at
U50 andA51, we get

j > j *A t

2t
, t,t/2 ~17!

FIG. 1. ~a! The field profilesB(x) for flux flow ~dashed lines!
and creep~squares! for U5U0@( j c / j )21# with H* 5H/2. The
critical state (j 5 j c) and the full penetration state (j 5 j * ) are
shown in solid black and gray lines, respectively. Note an alm
exact formation of a critical state at the crossover flow→creep.~b!
Spatial dependence ofU at different timest/tflow . Note almost
spatial constancy ofU except narrow regionsx>0.
l

e
n

j > j * expS 1

2
2

t

t D , t.t/2 ~18!

wheret/25phd2/f0H is the time of full penetration in the
flux flow regime. Forj c, j * the time of establishing of the
critical profile after switching on the external field
tflow[t( j c)5(t/2)(112 ln j* /jc).t as follows from Eq.
~18!.

The crossover from the flux flow to flux creep process
well defined, i.e., the critical profilej 5 j c is established at
t5t f low almost exactly throughout the whole sample@see
Fig. 1~a!#. More exactly, the fluctuations ofU which appear
in the whole slab at the crossover from flow to creepj
> j c) are of orderkT according to Eq.~8!, therefored j
,(kT/Uc) j c! j c . The only exclusion is the very center o
the slab,x>0, where j 50 and U shows relatively strong
variations, as we discussed in the previous section. Howe
this area is narrow and can be neglected when conside
the profilesB(x) and magnetizationm.

After the flux flow stage is completed, a much slow
process of flux creep starts, and various cases ofU(B, j ) can
be analyzed. First we consider the simplest case wherU
depends only onj.

B. Creep at j c5const, U5U„ j …

This case has been already studied in Refs. 10,12,22,
25. Here we analyze it as a test for our numerical solut
before consideration of more complicated models ofU(B, j ).
During the stage of flux creep (j , j c) @see Fig. 1~a!#, the
field profiles are even more straight than during the flux fl
stage,10,12 i.e., u j (x)u>const, and, in turn,U( j (x))>const
@see Fig. 1~b!#. Note a very narrow increase ofdU at x50,
wherej 50, which is consistent with the comment at the e
of Sec. II.

SinceUedge>U over almost the whole sample~the con-
tribution of the central regionuxu!d to m where the above
condition no longer holds is negligible!, one gets from Eqs
~13! and ~16!, using also Eq.~9!:

dU

dt
5

dU

d j

d j

dm

dm

dt
>
A
t

jUdU

d j Uexp~2U/kT!. ~19!

This equation can be integrated numerically for a
U( j )-dependence, and also can be solved with a logarith
accuracy;5 see Eq. ~1!. The latter means that the rea
U( j )-dependence is substituted by the tangent straight
with a slopedU/d j , as shown in Fig. 2, which is reasonab
since the relaxation slows down exponentially asU grows.
Thus the system spends most of the relaxation time near
final point whereU( j ) and its tangent line almost coincide
If we assumet50 at the crossover between flow and cree
where j > j c in the whole sample, then such an approxima
solution of Eq.~19! acquires the form of Eq.~1! with

t05
kT

udU/d j u
2phd2

Af0 jH
5

tkT

Aj udU/d j u
. ~20!

If one takest50 at the moment of instantaneous switchi
on the external fieldH, then, obviously, in Eq.~1! t should be
replaced byt2tflow . In the description of creep below w
use t50 at the crossover flow→creep. Note that instead o

st
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instantaneous switching on the external field can be sw
with a finite rateḢ. This leads to appearance of addition
term tsweep}1/Ḣ ~Ref. 19! under the logarithm in Eq.~1!.

As becomes clear from Eq.~1! and Fig. 2,t0 is the time
formally required to get fromU52` ~which corresponds to
t52t0) to U50 ~which corresponds tot50) along the
nonphysical part of the tangent line, corresponding to ne
tive U. Thus t0 has no direct physical meaning and shou
not be mixed with the characteristic durationtflow.t of flux
flow, see Eqs.~17! and ~18!.

Equations~1! and ~20! provide a logarithmic approxima
tion for the time required for a system to reach the energyU.
However, in order to use Eq.~1! to describe the
U(t)-dependence one observes thatt0 is not actually a con-
stant and depends onU ~or the same, ont). This effect is not
of great importance atdU/d j.const, i.e., whereU is an
almost linear function ofj, but cannot be neglected in th
opposite case of strongly nonlinear dependence ofU on j,
wheredU/d j changes significantly.

Consider the case of the collective creep model

U5Uc@~ j c / j !m21#, ~21!

which is an example of such a nonlinear dependence. H
the exponentm varies2 from m51/7 ~single vortex creep! to
m55/2 ~small bundles!. The straightforward solution of Eq
~19! then gives

EiS Uc1U

kT D2EiS Uc

kTD5Am
t

t
expS Uc

kTD , ~22!

where Ei is the integral exponential function. The logari
mic approximation for Eq.~22! acquires the form:

U5kT lnS 11Am
t

t
~U1Uc!/kTD , ~23!

which, if compared with Eq.~1!, implies

FIG. 2. Relaxation ofj can be imagined as a motion of a d
along theU( j ) curve ~solid!. For the logarithmic approximation
U( j ) is substituted by its tangent line~dashed!. Time t0 corresponds
to the ‘‘motion’’ along the negative part (U,0) of the line,
whereastflow corresponds to the ‘‘motion’’ fromj 5` down to j
5 j c alongU50.
pt
l

a-

re

-

t05
tkT

Am~U1Uc!
. ~24!

If during the creep processj decreases down toj min!jc , then
the energy increases up toUmax@Uc , whereUmax5U(jmin),
and t0 decreases down tot0

min>tkT/AmUmax. Regularly, the
latter estimation,t0>t0

min , is substituted into the logarithmic
solution Eq.~1!, and time dependence oft0 is neglected. This
results in an almost linear dependence ofU on ln(t) ~see Fig.
3!. Let us call such an approximation~wheret0 is treated as
a constant! as a ‘‘pure’’ logarithmic solution, whereas Eq
~23! and ~24! provide a ‘‘generalized’’ one.

The straightforward solution and both generalized a
pure logarithmic ones are compared in Fig. 3. In the sa
figure we show an exact numerical solution of Eq.~10! ob-
tained without any assumptions on spatial constancy ofU.
We usedt/Am as a useful time constant in Fig. 3. On
observes that the generalized logarithmic solution works
all t, and together with the straightforward solution provide
perfect fit to the exact one. On the other side, the pure lo
rithmic solution shows significant deviations from the exa
one, especially at short times. This is consistent with E
~24!, since thereU&Uc , and, in turn,t0@t0

min. Particularly,
the logarithmic solution misses the characteristic maxim
in the creep ratedU/d ln t which appears atAmt/t>10. For
h.1025 g/cm sec~Ref. 26! ~which implies thatT is well
below Tc), A.1, m51/7 ~single vortex creep!, and d51
mm, the maximum indU/d ln t appears att* .60/H sec,
whereH is measured in Oe. Thus the maximum or at least
tail can be resolved at experimentally accessible times. N
that the numerical factor in the latter estimation grows}d2,
and for some larger samplest* can be significantly greater
The position of such a maximum determined experimenta
can be used for determination of the parameterst/A andm.

The above theoretical results are compared in Fig. 4 w
the experimental data obtained on a large (d>1 mm)
YBa2Cu3O7 crystal. The relaxation of the magnetic mome

FIG. 3. Comparison of ‘‘pure’’ logarithmic~triangles!, straight-
forward ~circles!, and generalized logarithmic~solid line! solutions
of Eq. ~19!, which were derived under assumptionU(x)5const,
together with the ‘‘exact’’ numerical solution~squares! of Eq. ~10!
for U( j )5Uc@( j c / j )m21#. Open and filled symbols correspond
U/kT andd(U/kT)/d ln t, respectively. Note that all the solution
except the pure logarithmic one show a maximum indU/d ln t at
Amt/t*1.
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FIG. 4. Experimentally obtained relaxatio
rate d(U/kT)/d ln t ~triangles! and normalized
magnetic momentM /Mc , which is equal toj / j c

~circles! vs t and their fit by the generalized loga
rithmic solution at the same values of paramete
A/t50.03 sec21, Uc /kT512.62, andm52.03.
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t c
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t
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was fitted by the direct numerical solution of Eqs.~14! and
~21!, wheret/A, j c , m, andUc were considered as indepe
dent fitting parameters. ThusU(t)-dependence is found di
rectly from the experiment and is compared in Fig. 4 w
the theoretical curve found from Eq.~22! with the same pa-
rameters. The experimental and theoretical results almos
incide, and the characteristic maximum ind(U/kT)/d ln t at
t>10t/Am is very clear.

C. Creep at j c5const, U5U0„B/B0…„ j c / j 21…

Consider this simplest model dependence ofU on B andj,
which can mostly be analyzed analytically before a m
complicated case of collective creep. We have changed
notationU0 instead ofUc , as in the previous subsections, f
reasons which are clarified below. Figure 5 illustrates
numerical solution forB(x) and U(x) profiles in the case
One observes that the general conditionU>const holds in
this case as well as in the previous one, whereU was inde-
pendent ofB. The same narrow peak inU is located at the
center of the samplex50, as described in Sec. II. SinceU
depends only on the ratioU0 /B0 , we can chooseB0 arbi-
trarily. It is most convenient to acceptB0[H* . Then, using
the Maxwell equation~9! and the conditionU>const, one
obtains the approximate expression for the field profile in
sample:

x

d
>11

B2H

H*
1

U

U0
ln

B

H
. ~25!

Denoting the field at the center of the sample asB(0), which
is found from Eq.~25! at x50, one can rewrite the magnet
momentm @see Eq.~12!# as

m5
1

dEB~0!

H

xdB. ~26!

Then

]m

]t
5

]m

]U

]U

]t
52

1

U0
F ln

H

B~0!
2H1B~0!G]U

]t
.

On the other hand, as follows from Eq.~13!,
o-

e
he

e

e

]m

]t
52

A
4tU]B

]xU
x56d

exp~2U/kT!, ~27!

and one gets an equation which determines the activa
energy:

dU

dt
5
AU0

t

h

2~h1u!@h2b~0!2b~0!ln„h/b~0!…#

3exp~2U/kT!, ~28!

where we denotedh5H/H* , b5B/H* , and u5U/U0 .
This cumbersome expression can be reduced if one use

FIG. 5. ~a! The field profiles B(x) for flux creep at U
5U0(B/H* )( j c / j 21) with H* 5H/2 found by numerical solution
of Eq. ~10! ~squares! and by the semianalytical approach~solid
lines!. ~b! U(x) found for the sameU(B, j ) dependence from the
numerical solution of Eq.~10!.
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expansion overD5@H2B(0)#/H, which becomes exact a
D→0, but actually holds with 10% accuracy at worst for
D,1, i.e., for allB(0),H. Then one gets

dU

dt
>
A
t

~U1Uc!S 11
2

3
D Dexp~2U/kT!, ~29!

whereUc5hU0 . This result differs from Eq.~23! only by
the correction factor 112D/3. This means that the results o
the previous subsection, whereU was field independent, ap
ply here just by accounting for the correction factor
12D/3, which in most cases is not of great importance.

Equation ~29! enables us to find theU(t)-dependence
and then, using Eq.~25! we get the field profileB(x) as a
function of time, i.e., solve the creep problem complete
We call such an approach a ‘‘semianalytical’’ solution.
results are compared in Fig. 5~a! with the exact solution ob-
tained by a direct numerical integration of Eq.~10! with no
assumptions on constancy ofU. One observed that the sem
analytical solution, being much less time-consuming@note
that the solution of Eq.~29! is quite universal and has bee
already obtained in the previous subsection#, provides a per-
fect fit to the exact description of the creep process.

D. Creep at j c5const, U5U0„B/B0…
a
„ j c / j …µ

„collective creep…

This is the general dependence ofU on B and j in the
collective creep theory2 for j ! j c . The spatial constancy o
U holds in this case as well as in previously conside
cases. We have checked it numerically for variousa andm.
The conditionU>const together with the Maxwell equatio
~9! determines the field profile:

hn2bn>
n

u1/mS 12
x

dD , ~30!

where we denoten512a/m and assumeB05H* , as in the
previous case. Here we takeaÞm ~the casea5m is almost
identical to that considered in the previous subsection!. The
field b(0) is determined, as follows from Eq.~30!, by hn

2b(0)n5n/u1/m. The magnetic moment can be calculat
using Eq.~26!:

m5H* Fh2
u1/m

n11
„hn112b~0!n11

…G , ~31!

and, using Eq.~27!, one gets

dU

dt
5
Am~n11!

2thn21u2/m
@hn112b~0!

3~hn1u21/m!#21U exp~2U/kT!. ~32!

This expression, being a bit cumbersome, can be redu
using the expansion overD5(H2B(0))/H, which, as in the
previous case, works with reasonable accuracy~better than
10%) at allB(0)&H:

dU

dt
5
Am

t
UF11

2a

3m
DGexp~2U/kT!. ~33!

This result is very similar to Eq.~29!. The absence ofUc in
Eq. ~33! corresponds to the absence of term21 in the de-
l

.

d

ed

pendence of the activation energyU on j in this model~com-
pared with the two previous cases!. The factor in the square
brackets in Eq.~33! describes the effective renormalizatio
of U in the preexponential factor resulting from the depe
dence ofU on B. If a50, which means thatU is independent
of B, then the renormalization disappears. The same hap
at B(0)→H. At a5m the correction factor reduces to
12D/3, which is consistent with the previous case, whe
a5m51.

In Fig. 6 we compare the direct numerical solution of E
~10! with the semianalytical one determined by Eqs.~30! and
~31!. Figure 6~a! shows the numerical~exact! B(x) profiles
compared with Eq.~30!, and Fig. 6~b! showsm(ln t), ob-
tained numerically from Eq.~10! and semianalytically from
Eqs.~30!–~33!. The quality of the semianalytical approach
perfect in this case as well as in the previous one.

In the most general case

U5U0~B/B0!a@~ j c / j !m21#, ~34!

one gets an expression which naturally conforms to Eqs.~29!
and ~33!:

dU

dt
5
Am

t
~U1Uc!F11

2a

3m
D Gexp~2U/kT!, ~35!

where, as above,Uc5hU0 . We skip the cumbersome der
vation of the last expression, which requires expansion o
D starting from the equation for the field profileB(x). The
generalized logarithmic solution of this equation acquires
form

FIG. 6. ~a! The same as in Fig. 5~a! for the collective creep
dependenceU5U0(B/H* )a( j c / j )m with a51, m52, and H*
5H/2. ~b! Magnetization for the sameU(B, j ) dependence found
from the numerical solution of Eq.~10! ~circles! and by semiana-
lytical approach~solid line!. For m/H,0.1 the circles and the line
completely coincide. Note:m/H50.25 corresponds to a critical pro
file j 5 j c.
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U5kT lnS 11
Af0Hm~U1Uc!@11~2a/3m!D#

2phd2kT
t D ,

~36!

which coincides with Eq.~1! if

t05
2phd2kT

Af0Hm~U1Uc!@11~2a/3m!D#
5

H*

H
tH , ~37!

where we introducedtH[t0(H5H* ). Note thattH is almost
field independent, sinceH enterstH only via D. Note that
both t0 andtH depend on time viaU and the correction term
~in square brackets!.

E. Creep at j c5 j c„B…Þconst

Above, we have considered onlyj c5const. However, the
field dependence of the critical current,j c5 j c(B), does not
violate the general condition, Eq.~2!, of self-organization of
flux creep. As a direct consequence of this condition it
worth mentioning the following: If the dependence ofU on j
and B has the form:U} f @ j c(B)/ j #, wheref is an arbitrary
function, then the spatial constancy ofU results in establish-
ing of a ‘‘partial’’ critical state22 with j } j c(B). For instance,
if the critical current obeys the Kim dependencej c(B)
5 j 0B0 /(B01B), then the field profileB(x) during the re-
laxation should be determined by the conditionj
5p j0B0 /(B01B) with 0,p,1.

However, for more complicated dependencies ofU on B
and j this is not the case, and the profilesB(x) can differ
significantly from that in the critical state. In the next secti
we consider an example of such a behavior.

IV. SEMIANALYTICAL SOLUTIONS FOR ANOMALOUS
MAGNETIZATION „FISHTAIL …

Equation~35! and its reduced forms@see Eqs.~29! and
~33!#, which are just ordinary differential equations, prese
the method of semianalytical integration of the equation
flux motion @see Eq.~10!#, for the case of collective creep
where the dependence ofU on B and j is described by Eq.
~34!, or by its reduced versions. Of course an analogous
lution can be found for anyU(B, j )-dependence, not only fo
that described by Eq.~34!. This semianalytical approach pro
vides a good fit to the exact solution, obtained by numer
integration of Eq.~10!, as one can see in Fig. 6. The corre
tion factor 11(2a/3m)D can be neglected except for sho
times t*t/Am.

The semianalytical solutions can be applied for the
scription of an anomalous magnetization, coined a ‘‘fis
tail,’’ found in clean HTSC.6–8 Note that j c enters Eq.~35!
only via the correction factor which is negligible in mo
cases, especially at high fieldsH@H* whereD!1. Thus the
solutionU(t) of Eq. ~35! is determined by the current expo
nent m ~and not by the field one,a), by the characteristic
energyUc , and byt ~which in turn depends ond, h, and
H). If one measures the magnetization currentj at the edge
of the sample, whereU(B, j )5U(H, j ) as a function ofH,
keeping the time windowt of the experiment constant fo
eachH ~this is the case for most studies of fishtails!, thenU
along the measured lineM (H) or j (H) can be written, as
follows from Eq.~36!, as
s

t
r

o-

l
-

-
-

U~H,t !/kT2 ln~U1Uc!

> ln H1 ln t1 lnSAf0m@11~2a/3m!D#

2phd2kT
D ,

~38!

where the last term in Eq.~38! almost does not depend onH
andt. This means that the magnetization curve is determi
by

dU

kT
2

dU

U1Uc
5

dH

H
. ~39!

In Fig. 7 we present the results of our semianalytical a
proach to the problem of dynamic fishtail formation takin
j c(B)5 j 0Bc /(Bc1B) ~Kim model! and collective creep
with

U~B, j !5U0~B/H* !aF S j c~B!

j D m

21G S Bc1B

B D m

. ~40!

The last factor in this equation is added to cancel the dep
dence ofj c on B. This means that we are using a model f
U(B, j ), where the conditionU50 provides the Kim profile
for j c(B) ~initial stage of creep! and, on the other side,U
}Ba j 2m for j ! j c , as predicted by the collective cree
theory.2 Then at eachH we find the energyU down to where
the system relaxes during the ‘‘experimental’’ time windo
t, and then, using thisU, we determine the correspondin
j x56d according to Eq.~40!. The results show a clear fishta
due to fast relaxation at low fields~see Fig. 7!.

Note that Eq.~40! provides an example of the case whe
the field profilesB(x) are significantly different from the
critical one at j 5 j c , and a ‘‘partial critical state’’22 is not
established.

SincedU5(]U/]H)dH1(]U/] j )d j , one obtains using
Eq. ~39! that the magnetization curve~fishtail! is determined
by the condition:

d j

dH
52S ]U

]H
2

kT

H

U1Uc

U1Uc2kTD S ]U

] j D 21

. ~41!

FIG. 7. Dynamic development of anomalous magnetizat
~fishtail! found by the semianalytical solution of the Kim mod
@see Eq.~40!# with Bc52H* , a51, andm52. Relaxation starts a
t50 from j c(H)5 j 0Bc /(Bc1H) shown as dashed line. Due t
faster relaxation at smallH an anomalous magnetization develops
j ! j c . Circles and solid lines correspond to the direct numeri
and semianalytical solutions, respectively, for ln(t/tflow)52.8, 7.4,
and 14.3.
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For the case of collective creep, whereU}Ha j 2m, we have
]U/]H5(a/H)U and]U/] j 52(m/ j )U. Then, taking into
account thatU1Uc@kT, we get

d j

dH
>

a

m

j

HS 12
1

a

kT

U D . ~42!

The peak of the fishtail, wherej (H) reaches maximum, cor
responds toU>kT/a, as follows from Eq.~42!. This im-
plies thatj increases as a function ofH until it almost reaches
the j c(H) curve. Far belowj c , wherekT/aU!1, one gets
from Eq. ~42! that j }Ha/m.

We see from Eqs.~38! and~39! that U changes along the
magnetization curve obtained at a fixed time windowt. How-
ever, one can measurej Ht(H) keeping the productHt as
constant, which, according to Eq.~36!, should result in a
constantU along the magnetization curve@neglecting the
correction factor 11(2a/3m)D]. The difference j Ht(H)
2 j (H), where j (H) is taken att5const, is determined by

d~ j Ht2 j !

dH
>2

kT

H~]U/] j !
, ~43!

which provides a tool for independent analysis
U( j )-curve.

Above in this section we have considered the exponena
and m to be constants. However, different regions in thej
2H diagram correspond to different relaxation regim
such as single vortex creep, small and large bundle cr
etc. ~see Refs. 2–4!. The energy scaleU0 , as well as the
exponentsa and m may vary significantly from one region
of j 2H to another. As one observes from Eq.~36!, the cru-
cial exponent of the above two ism. Its rapid change at the
boundary between the creep regions fromm1 to m2 is
equivalent to a change ofH by factor m2 /m1 . As follows
from Eq. ~38!, this results in a change of. ln(m2 /m1) in
U/kT at the boundary between two creep regions. ThusU
does not change much at the crossover from one pinn
regime to another. However,j ~and, in turn, M ) can be
changed significantly at such a boundary, since for differ
relaxation laws~different Uc , a, and m) the sameU is
reached at significantly differentj. As H increases, the grow
ing vortex bundles lead to increase of characteristic ener
Uc , thus one should expect a steplike increase ofj when
crossing the boundariessingle vortex pinning→small
bundles→ large bundles.

If one measures the exponentm along the magnetization
curve~see, for instance, Ref. 7!, then a curve of constantU in
the H2 j diagram can be plotted using rathert}(mH)21

instead oft}H21, as was suggested above.

V. RELAXATION IN THE REMANENT STATE AND
ANNIHILATION LINES

A particular and very interesting case, where the d
cussed above self-organization of the flux motion should
modified significantly, is relaxation in the presence of an
hilation linesB50. The vortices and antivortices approa
the annihilation line from different sides and annihilate ea
other. The arguments of Sec. II for the constancy ofU are
f

,
p,

g

t

es

-
e
-

h

not valid in this case, at least in the vicinity of the annihil
tion lines~see comment at the end of Sec. II!. Therefore, this
case should be studied separately.

Consider the simplest situation of remanent relaxati
where the field has been ramped up and then instantaneo
removed, soB50 at the edgesx56d of the slab. There are
no antivortices in this case, since the annihilation line co
cides with the edge of the sample.

The description of the flux motion in this case using E
~3! looks self-contradictory since at the sample edgeB50,
whereas the magnetic flux currentD5Bv is finite at the
edges and, moreover, obviously should reach there its m
mal value over the sample. However, the contradiction
void provided the field vanishes at the sample edge aB
}Ad2x, i.e., proportional to the square root of the distan
to the edge~see Fig. 8!. At the same time the vortex velocit
diverges at the sample edge asv}]B/]x}1/Ad2x. This
divergency is removed by an appropriate cutoff ford2x,
which we discuss later in this section, but inevitably leads
the appearance of the flux-flow region near the edge or, m
generally, near the annihilation line. HoweverD
}B(]B/]x) remains finite and continuous with no singula
ity at the edge. This is confirmed by direct numerical so
tion of the relaxation in the remanent state~see Fig. 8!.

Let us estimate the coefficientk in the square-root depen
denceBedge>kAd2x near the sample edge, which shou
include the flux flow regionU50. The magnetic flux curren
reaches atx5d its maximum over the sample:Dx5d
5(f0/4ph)@B]B/]x#x→d5f0k2/8ph, but remains of the
same order as the mean flux current^D& over the sample:
Dx5d5C^D&, whereC*1 is a numerical factor. Estimating
^D& . (Af0/4ph)^B&^]B/]x&exp(2^U&/kT), ^B&.B(0)/2,
^]B/]x&.B(0)/d, one getsk.B(0)ACA exp(2^U&/kT)/d.
Note that the above estimation is based on the constanc
U, i.e., U>^U& throughout the sample except the edge flu
flow regions, which we assume to be small. Thus we ge

Bedge~x!>B~0!ACA exp~2^U&/kT!
d2x

d
. ~44!

A natural cutoff for the area of applicability of Eq.~44! is
d2x.l, otherwise the surface effects such as Be

FIG. 8. Spatial dependencies of the magnetic inductionB
~squares!, vortex velocityv ~circles!, and the magnetic currentD
5Bv ~triangles! found numerically from Eq.~11! near the sample
edgex5d. The fits areB}A12x/d andv}1/A12x/d. Note that
D shows no peculiarity atx5d.
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Livingston interaction with the surface27 should be ac-
counted for. There are additional restrictions:~i! the current
cannot exceed the depairing one:j 5(c/4p)]B/]x, j d ; and
~ii ! the intervortex distancea.Af0 /B(x) should not exceed
the distance to the surfaced2x at any x. It can be easily
confirmed that the conditiond2x.l is stronger than the
other two at most reasonable values ofB(0) andd.

Let us call the regionx̃,uxu,d near the sample edge
where the activation energy grows fromU50 at the very
edge ~flux-flow region! up to U( x̃)>^U&, as the area of
‘‘annihilation dominated’’ organization of flux creep. It
width d2 x̃ can be estimated as follows: We substitute E
~44! into the collective creep formula forU(B, j ), see Eq.
~34!, and findx̃ whereU reaches its mean value^U&. This is
of course a crude approximation, since Eq.~44! is valid in
the flux-flow region only, and for the whole ‘‘annihilatio
dominated’’ region it provides an underestimation forB and,
in turn, j. After straightforward calculations we get

d2 x̃

d
.S ^U&

U0
D 2/~a1m!

expS a2m

a1m

^U&
kT D . ~45!

The above result implies that the widthd2 x̃ of the ‘‘an-
nihilation dominated’’ region is crucially dependent upon t
relationship between the exponentsa andm. For m.a and
^U&@kT this region appears to be exponentially small, i.
x̃>d. Computer simulations show a steplike increase ofU at
the edge to the value comparable with^U&, and thenU
grows smoothly and slowly towards the center of the sam
@see Fig. 9~a!#. Though dU appears to be significantl
greater than for the case of finiteH, discussed in previous
sections, even hereU does not vary significantly:dU
&4kT in the whole sample, excluding the sharp step at
edge. For the opposite case,m,a, one finds from Eq.~45!

the unphysical result that (d2 x̃)/d is exponentially large
though, of course, (d2 x̃)/d,1 anyway. This implies tha
our assumption about the spatial constancy ofU(x)>^U&
throughout almost the whole sample~except small edge re
gions! is self-contradictory in this case. Thus form,a the
effect of the annihilation line spreads over the whole sam
and there is not any evidence of constancy ofU. This is
confirmed by numerical simulations@see Fig. 9~b!#. The
boundary case, wherem5a, is illustrated in Fig. 9~c!.

VI. CONCLUSION

We considered the generalization of the logarithmic so
tion of Eq.~1! for flux creep at different dependencies of t
activation energyU on fieldB and currentj and confirmed it
by numerical analysis. The general condition which gove
the relaxation isU(x)>const throughout the sample, an
this result holds at any particularU(B, j )-dependence. This
results from aself-organizationof flux creep in the under-
critical statej , j c , which implies that the influence of all th
creep parameters,B, j, andU, on the relaxation rate shoul
be of the same order of magnitude. This self-organizat
.

,

le

e

e,

-

s

n

should not be mixed with theself-organized criticalityof
flux motion at j > j c .

For U independent ofB, i.e., U5U( j ), we restore the
known result of straightness (j .const) of the field profiles
throughout the sample. For the case whereU essentially de-
pends onB the condition of spatial constancy ofU(B, j )
determines the one-parameter family of field profilesBU(x)
and enables us to find a semianalytical solution forU(t) and,
in turn, for time evolution of the field profilesBU(x), i.e., to
solve the creep problem completely. Such a semianalyt
solution provides a perfect fit to the exact numerical solut
~obtained without any assumptions on constancy ofU) and
appears to be quite useful for the description of the dyna
development of anomalous magnetization~fishtail! due to
fast relaxation rates at low fields.

The effect of the annihilation linesB50 on the self-
organization of the collective creep whereU}Ba j 2m @see
Eq. ~34!# is crucially dependent on the relationship betwe
a andm. At a,m the effect is just an increase of variatio
dU over the sample, with a steplike vanishing ofU in the

FIG. 9. The profiles of activation energyU/kT in the remanent
state:~a! a50.1, m51; ~b! a51.5, m50.5; ~c! a51, m51.
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very narrow regions of flux flow in the vicinity of an ann
hilation line. However, forU@kT we still getdU!U, i.e.,
the conditionU>const holds qualitatively in this case. A
a.m the above condition no longer holds, and the prese
of an annihilation line destroys the self-organization in
whole sample irrespective of its size.
i-
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he
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